# View more python learning tutorial on my Youtube and Youku channel!!!# Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg# Youku video tutorial: http://i.youku.com/pythontutorial"""Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly."""from __future__ import print_functionimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# number 1 to 10 datamnist = input_data.read_data_sets('MNIST_data', one_hot=True)def add_layer(inputs, in_size, out_size, activation_function=None,): # add one more layer and return the output of this layer Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1,) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b,) return outputsdef compute_accuracy(v_xs, v_ys): global prediction y_pre = sess.run(prediction, feed_dict={xs: v_xs}) correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys}) return result# define placeholder for inputs to networkxs = tf.placeholder(tf.float32, [None, 784]) # 28x28ys = tf.placeholder(tf.float32, [None, 10])# add output layerprediction = add_layer(xs, 784, 10, activation_function=tf.nn.softmax)# the error between prediction and real datacross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1])) # losstrain_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)sess = tf.Session()# important step# tf.initialize_all_variables() no long valid from# 2017-03-02 if using tensorflow >= 0.12if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: init = tf.initialize_all_variables()else: init = tf.global_variables_initializer()sess.run(init)for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys}) if i % 50 == 0: print(compute_accuracy( mnist.test.images, mnist.test.labels))